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breast cancers. However, since the separating hyperplane determination exclusively relies on support

vectors, the SVM is essentially a local classifier and its performance can be further improved. In this

Available online 8 April 2009

Keywords:

Breast cancer detection

Computer-assisted diagnosis

Support vector machine

Structured support vector machine
12/$ - see front matter & 2009 Elsevier B.V. A

016/j.neucom.2009.02.015

s work was supported by the Hong Kong Re

UHK 4453/06M.

esponding author.

ail address: dfwang@cse.cuhk.edu.hk (D. Wan
a b s t r a c t

Breast cancer is one of the most common cancers diagnosed in women. Large margin classifiers like the

support vector machine (SVM) have been reported effective in computer-assisted diagnosis systems for

work, we introduce a structured SVM model to determine if each mammographic region is normal or

cancerous by considering the cluster structures in the training set. The optimization problem in this

new model can be solved efficiently by being formulated as one second order cone programming

problem. Experimental evaluation is performed on the Digital Database for Screening Mammography

(DDSM) dataset. Various types of features, including curvilinear features, texture features, Gabor

features, and multi-resolution features, are extracted from the sample images. We then select

the salient features using the recursive feature elimination algorithm. The structured SVM achieves

better detection performance compared with a well-tested SVM classifier in terms of the area under the

ROC curve.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Breast cancer is a very commonly diagnosed cancerous
abnormality in that one third of all cancers detected among
women are related to breast. Current technologies are very
effective to treat early-stage breast cancers, which makes the
early detection a crucial task [1]. Before clinical symptoms appear,
screening mammography is still the most effective tool to catch
early signs of cancerous abnormalities [2]. To improve the
accuracy and efficiency of digital mammogram interpretation,
computer-assisted diagnosis (CAD) [3] systems have been
developed.

The objective of a typical breast cancer CAD system is to detect
and evaluate various cancerous mammograms automatically.
Fig. 1 illustrates the underlying principle of a CAD system. In
this framework, the region of interest (ROI) is first selected from
the mammogram as a sample image. Then the sample image is
preprocessed by noise reduction and image enhancement [4].
A large number of features, such as texture features, multi-
resolution features, and shape features, are obtained via feature
ll rights reserved.

search Grant Council under

g).
extraction algorithms. To improve the classification efficiency, the
redundant features are removed using a feature selection method.

There are three categories of abnormalities of interest in CAD
systems, i.e., circumscribed masses [5], micro-calcification clus-
ters [6], and spiculated or stellate lesions [7]. Example mammo-
graphic appearance in each category is illustrated in Fig. 2.

Founded upon Vapnik’s statistical learning theory, the support
vector machine (SVM) [8] has played an important role in many
applications, including CAD based on medical images. Previous
work, such as [9], has explored the use of SVM for detection of
micro-calcification regions in digital mammograms. Even though
SVM is a well-performed classifier, its performance is still limited
because the data structure information is underutilized in the
determination of the separating hyperplane. In this study, the
detection of the three typical types of mammographic abnorm-
alities (cf. Fig. 2) is formulated as a supervised learning problem.
We propose the use of structured SVM (s-SVM) to detect breast
cancers in digital mammograms. Fig. 3 shows an illustrative
example of the intuition of proposing the s-SVM model.
The square samples in the upper cluster tend to spread towards
the opposite class, while the remaining ones scatter in the
perpendicular direction. The standard SVM calculates the
decision plane relying exclusively on the support vectors
denoted by the light colored points, which results in an
unbiased boundary separating the two classes. However, the
structured SVM is designed to yield a decision plane leaving larger

www.sciencedirect.com/science/journal/neucom
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room for the upper cluster in the square class by integrating the
cluster covariance information in the training process. Therefore,
s-SVM is more likely to correctly classify the unseen patterns and
thus potentially possesses good generalization ability.
2. Structured support vector machine

2.1. Data structure detection

To investigate the structure of a given dataset, the patterns are
clustered hierarchically in the input space for the linear s-SVM
and in the kernel space for the nonlinear s-SVM. The agglom-
erative hierarchical clustering (AHC) algorithm [10] can be
described as follows.

Initialize each point as a cluster

Calculate the distance between every two clusters

While more than one cluster remains

Find the closest pair of clusters

Merge the two clusters

Update the distance between each pair of clusters

End

The output of this algorithm is a tree structure known as the
dendrogram [11], whose topology is also a representation of the
clustering process. Therefore, by cutting this dendrogram at
different levels, one can achieve diverse clustering results. Various
hierarchical clustering approaches [10] differ in the method of
finding the closest pair of clusters. We use the Ward’s linkage
clustering [12] in this study for the reason that clusters derived
from this method are compact and spherical [13], which provides
a meaningful basis for the calculation of covariance matrices.
If S and T are two clusters with means S̄ and T̄ , respectively,
the Ward’s linkage WðS; TÞ between clusters S and T can be
calculated as

WðS; TÞ ¼
jSj � jTj � kS̄� T̄k2

jSj þ jTj
. (1)
Fig. 2. Typical breast abnormalities in mammograms. (a) Circumscrib

Fig. 1. Schematic block diagram of the system for breast cancer detection.
In the high-dimensional, implicit kernel space, the hierarchical
clustering is still applicable. The Ward’s linkage between FðxiÞ and
FðxjÞ, i.e., the images of patterns xi and xj, can be calculated by

WðFðxiÞ;FðxjÞÞ ¼
1
2½kðxi;xiÞ þ kðxj;xjÞ � 2kðxi;xjÞ�,

where kðxi;xjÞ:¼FðxiÞ �FðxjÞ is a kernel function [8]. During
hierarchical clustering, the Ward’s linkage between clusters to
be merged increases as the number of clusters decreases. A curve,
namely the merge distance curve, is drawn to represent this
process. The dendrogram can be cut when given the number of
clusters, which can be determined by finding the knee point [14],
i.e., the point of largest curvature on the merge distance curve.
2.2. second order cone programming (SOCP) formulation of s-SVM

Given a training set fðxi; yiÞg
‘
i¼1 with input data xi 2 R

n and
class labels yi 2 fþ1;�1g, the s-SVM calculates a decision hyper-
plane, i.e., w � xþ b ¼ 0, to separate the two classes as robustly as
possible. For the purpose of deriving structured SVM, we suppose
there are CP clusters in class P and CN clusters in class N, i.e.,
P ¼ P1 [ � � � [ Pi [ � � � [ PCP

and N ¼ N1 [ � � � [ Nj [ � � � [ NCN
. Since

the clusters derived by the Ward’s linkage AHC are compact and
spherical [13], we assume each cluster has a Gaussian distribu-
tion, i.e., Pi�N (lPi

;RPi
), i ¼ 1; . . . ;CP , and Nj�N (lNj

;RNj
),
ed mass; (b) micro-calcification; (c) spiculated or stellate lesion.

Fig. 3. The decision boundaries calculated by the SVM and the s-SVM. The s-SVM

leaves more space for the upper cluster of the class represented by dark squares,

since that cluster has stronger distribution tendency towards the opposite class.
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j ¼ 1; . . . ;CN . The linear s-SVM can generally be formulated as

min
XjPjþjNj
‘¼1

x‘

s.t. PrfðwT x‘ þ bÞX1� x‘gXkPi
; x‘ 2 Pi,

Prf�ðwT x‘ þ bÞX1� x‘gXkNj
; x‘ 2 Nj,

kwkpg,

x‘X0. (2)

Here we can find that the linear classification constraints in SVM
optimization problem [8] are replaced by probabilistic ones. These
probabilistic thresholds are determined proportional to the
cluster size, i.e., kPi

¼ jPij=ðjPj þ jNjÞ, and kNj
¼ jNjj=ðjPj þ jNjÞ.

The probabilistic constraints in (2) can be restated as determinis-
tic ones by utilizing the cluster distribution information [15].
Take the first probabilistic constraint for example, we define
z‘:¼�w � x‘ , x‘ 2 Pi. z‘ is a normal random variable with mean z̄‘
and variance s2

z‘
¼ wTRPi

w. Therefore ðz‘ � z̄‘Þ=sz‘�N (0;1). The
first constraint then becomes

Pr
z‘ � z̄‘
sz‘

p
b� 1þ x‘ � z̄‘

sz‘

� �
XkPi

(3)

and we can compute the left-hand side of (3) by evaluating the
cumulative distribution function for a standard normal Gaussian
distribution

cðuÞ ¼ PrfNð0;1Þpug ¼
1ffiffiffiffiffiffi
2p
p

Z u

�1

expð�s2=2Þds.

Consequently, (3) is equivalent to the condition

c
b� 1þ x‘ � z̄‘

sz‘

� �
XkPi

,

where cðuÞ is monotonic increasing and invertible. As matrices RPi

and RNj
are positive semi-definite, there exist matrices R1=2

Pi
and

R1=2
Nj

such that

RPi
¼ R1=2

Pi

T
R1=2

Pi
; RNj

¼ R1=2
Nj

T
R1=2

Nj
. (4)

Therefore, we have the following optimization problem:

min
XjPjþjNj
‘¼1

x‘

s.t. ðwT x‘ þ bÞX1� x‘ þcPi
kR1=2

Pi
wk; x‘ 2 Pi,

� ðwT x‘ þ bÞX1� x‘ þ cNj
kR1=2

Nj
wk; x‘ 2 Nj,

kwkpg,

x‘X0, (5)

where cPi
:¼c�1

ðkPi
Þ and cNj

:¼c�1
ðkNj
Þ. The optimization problem

(5) is an instance of the second order cone programming.
Minimizing a linear objective over second order cone (SOC) and
linear constraints is known as an SOCP problem [16]. Recent
advances in interior-point methods for the convex nonlinear
optimization [17] have made such problems feasible. As a special
case of the convex nonlinear optimization, SOCP problems have
gained much attention recently, and can be handled efficiently by
the existing software such as SeDuMi [18]. The total complexity of
building the constraint matrix in the SOCP problem and solving
the SOCP problem using interior-point method is OððjPj þ jNjÞ � n3Þ

[16].

2.3. Connection with SVM

In s-SVM, we consider the data structure information in the
hyperplane determination. Specifically, we assign a probabilistic
value to each linear classification constraint based on the detected
structures. If we ignore the data structure information
and assume the constraints are defined with certainty as in
the standard SVM model, the optimization problem (2)
degenerates to

min
XjPjþjNj
‘¼1

x‘

s.t. ðw � x‘ þ bÞX1� x‘; x‘ 2 Pi,

� ðw � x‘ þ bÞX1� x‘; x‘ 2 Nj,

kwkpg,

x‘X0. (6)

For a proper choice of regularization parameter C in SVM [8] and
the weight constraint parameter g in s-SVM, the optimization
problem (6) is equivalent to the one involved in SVM [19]. This
means the SVM is a special case of the s-SVM.
2.4. Kernelization

For some problems, improved classification can be achieved
using nonlinear s-SVM. According to Cover’s pattern separability
theory, patterns linearly nonseparable in the input space may be
transformed into a kernel space to make them linearly separable,
as long as the transformation is nonlinear and the dimensionality
of the kernel space is high enough [20]. This nonlinear
transformation can be achieved using Mercer kernels [8,21]. The
basic idea of nonlinear s-SVM is to map data vectors from the
input space to a high-dimensional feature space using a nonlinear
mapping F, and then detect data structures via kernelized AHC
before proceeding with pattern classification using linear s-SVM.
However, the nonlinear mapping F is performed by employing
kernel functions kðxi;xÞ, which obeys Mercer’s conditions [8].
Thus the optimization problem of s-SVM in the kernel space can
generally be formulated as follows:

min
XjPjþjNj
‘¼1

x‘

s.t. ðwTFðx‘Þ þ bÞX1� x‘ þcPi
kRF

Pi

1=2
wk; x‘ 2 Pi,

� ðwTFðx‘Þ þ bÞX1� x‘ þcNj
kRF

Nj

1=2
wk; x‘ 2 Nj,

kwkpg0,
x‘X0.

The above optimization problem is not solvable unless it is
represented in the kernel form kðxi;xjÞ ¼ FðxiÞ

TFðxjÞ, i.e., a dot
product of maps of samples.

Corollary 1. If the estimates of mean and covariance matrix of

cluster S in the kernel space are, respectively,

lF
S ¼

1

jSj

X
x2S

FðxÞ (7)

and

RF
S ¼

1

jSj

X
x2S

ðFðxÞ � lF
S ÞðFðxÞ � lF

S Þ
T , (8)

the optimal w lies in the space spanned by the training data maps.

According to Corollary 1, we can write w as

w ¼
XjPjþjNj
‘¼1

a‘Fðx‘Þ, (9)

where a‘ 2 R are coefficients. By using w expressed in terms
of data images, we can obtain the kernel form of the
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Table 1
The training and test subsets each with normal and abnormal mammographic

sample images.

# Normal regions Abnormal/cancerous regions

# Mass # Calcification # Spiculation

Training 150 26 28 27

Test 150 27 28 28

Total 300 53 56 55

D. Wang et al. / Neurocomputing 72 (2009) 3296–3302 3299
optimization problem

min
XjPjþjNj
‘¼1

x‘

s.t. ðK‘aþ bÞX1� x‘ þcPi
k ~KPi

ak; x‘ 2 Pi,

� ðK‘aþ bÞX1� x‘ þcNj
k ~KNj

ak; x‘ 2 Nj,

kakpg,

x‘X0. (10)

K‘ represents the ‘th row in the kernel Gram matrix K, in which
the elements satisfy Kði; jÞ ¼ kðxi;xjÞ, i; j ¼ 1; . . . ; jPj þ jNj.
~KPi
¼ ð1=

ffiffiffiffiffiffiffi
jPij

p
ÞðKPi

� ejPij
� vT

Pi
Þ, where ejPi j

is an all-one column
vector with length jPij. KPi

is the kernel matrix between the
cluster Pi and all the training patterns, that is KPi

ðs; jÞ ¼ kðxs;xjÞ,
s ¼ 1; . . . ; jPij, j ¼ 1; . . . ; jPj þ jNj. vPi

is the mean vector of matrix
KPi

and vPi
ðjÞ ¼

P
xs2Pi

kðxs;xjÞ=jPij, j ¼ 1; . . . ; jPj þ jNj. ~KNj
is calcu-

lated similarly to ~KPi
.

One can easily identify that this optimization problem is
entirely expressed in terms of inner products between data
images only, which makes the kernelized s-SVM solvable. The
nonlinear constraints are exactly in the form of a second order
cone programming problem [16]. The optimal separating hyper-
plane can be determined by solving the SOCP problem (10).
Normally only a proportion of data points with coefficients a‘ are
not zero, which are called the support vectors of the s-SVM. A test
point x is discriminated as positive or negative by the following
decision function:

f ðxÞ ¼ sgn
X‘
i¼1

aiKðxi;xÞ þ b

 !
. (11)

The generalization error bound of s-SVM can be calculated
according to Theorem 1 (see Appendix A for proof). Note that the
generalization error bound subtracted from 1 gives the general-
ization bound.

Theorem 1. Given a decision hyperplane calculated by s-SVM that

separates the positive class P from the negative class N in the training

set, and reliable estimates of means lPi
(or lNj

) and covariance

matrices RPi
(or RNj

) for cluster Pi (or Nj), i ¼ 1; . . . ;CP and

j ¼ 1; . . . ;CN , the generalization error of s-SVM is bounded by

XCP

i¼1

jPij

jPj þ jNj

1

1þ d2
Pi

 !
þ
XCN

j¼1

jNjj

jPj þ jNj

1

1þ d2
Nj

0
@

1
A,

where dPi
and dNj

are the minimum Mahalanobis distances from the

opposite half space to the cluster center lPi
and lNj

.

Actually, for nonlinear s-SVM, the minimum squared distance
d2

Pi
can be obtained by

d2
Pi
¼

1

jPij
eT

Pi
KPi

aþ b

� �
þ

aT ~K
T

Pi

~KPi
a

and d2
Nj

by

d2
Nj
¼

�
1

jNjj
eT

Nj
KNj

a� b

� �
þ

aT ~K
T

Nj

~KNj
a

,

where ðzÞþ ¼ maxðz;0Þ.
3. Experimental validation

3.1. Description of the dataset

We use the benchmark dataset for testing mammography CAD
algorithms, i.e., the Digital Database for Screening Mammography
(DDSM) [22] to evaluate the proposed s-SVM model and make
comparison with the standard SVM. DDSM is a publicly available
database distributed by University of South Florida. The normal
and abnormal regions each with 512� 512 pixels were cropped
from mammograms in DDSM. As indicated in [23], the sample
image consisting of 512� 512 pixels is large enough to contain
commonly seen cancerous regions and to extract multi-resolution
features. For the abnormal images, this 512� 512 sample is
centered in the center of the abnormal region. The normal sample
images were semi-manually cropped from normal mammograms
with various density types. Now the whole dataset contains
164 abnormal (or cancerous) and 300 normal sample images
(see Table 1). In the abnormal subset, there are 53 masses,
55 micro-calcifications, and 56 spiculated lesions. We then
partition the acquired dataset randomly into training and test
subsets with similar proportions of cancerous and normal
samples (see Table 1).

3.2. Preprocessing

Each mammographic sample image is preprocessed prior to
feature extraction. We first use the median filtering to reduce the
overall noise caused by statistics of X-ray quantum absorption
[24]. Then the filtered sample images are enhanced using a
physics-based mammogram enhancement method introduced in
[4], which models the X-ray physics of the imaging process.

3.3. Feature extraction

A set of features is extracted from each mammographic region
(or sample image) in the dataset because they all have been
reported to be useful in separating cancerous regions from normal
ones. These features include curvilinear features, texture features,
Gabor features, and multi-resolution features [23].
�
 Curvilinear features: For the normal sample, the curvilinear
markings tend to radiate from the nipple toward the chest wall.
However, for the abnormal sample, the curvilinear structure
usually appears as random or partially absent. A line detection
algorithm was used to extract the curvilinear structure and
18 curvilinear features are extracted.

�
 Gray level co-occurrence features: The texture patterns in the

mammographic regions can be well-characterized by the gray
level co-occurrence matrix (GLCM). Sixteen texture features
were extracted from the isotropic GLCM.
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Table 2
Experimental results of all four combinations of the two classifiers (SVM and s-SVM) and the two kernel functions (the polynomial kernel and the Gaussian kernel).

SVM-polynomial SVM-Gaussian s-SVM-polynomial s-SVM-Gaussian

Parameters K ¼ 2, C ¼ 100 s ¼ 2:5, C ¼ 500 K ¼ 2:5, g ¼ 1 s ¼ 3, g ¼ 10

# Features 23 19 20 16

Az 0.907 0.942 0.939 0.970

Accuracy (%) 84.1 87.5 87.3 91.4

Lower bound (%) – – 72.5 85.4
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�
 Gabor features: Gabor filter is capable of simultaneously
dealing within both spatial and frequency domains. We use a
total of 16 Gabor filters with the combination of four
orientations and four scales to construct a Gabor filterbank.
So for each region, 32 Gabor features are extracted.

�
 Multi-resolution statistical features: We use the Quincunx

wavelet transform to extract multi-resolution features. Statis-
tical features are extracted from the first four decomposition
images in the even levels, which have the spatial resolution of
256� 256, 128� 128, 64� 64 and 32� 32. For each of them,
five statistical features are extracted and a total of 20 multi-
resolution features are extracted for each sample image.

For each sample image with 512� 512 pixels, we generate an
86-feature-vector set by combining the above four feature sets.
These features, together with the labels (normal or abnormal),
constitute a supervised learning problem.
Fig. 4. The ROC curves of all four combinations of the two classifiers (SVM and s-

SVM) and the two kernel functions (polynomial kernel and Gaussian kernel).
3.4. Feature selection via recursive feature elimination (RFE)

Although the cropped sample image is dramatically smaller in
size compared with the original mammogram, the current feature
vector is still not effective enough and considerably redundant for
classification. So that a feature selection method is required to
select a small set of the most discriminatory features for
classification. A popular wrapper feature selection method,
recursive feature elimination [25], is used in our current feature
selection process. The RFE feature selection method was proposed
for SVM to solve a cancer classification problem. RFE for SVM
performs feature selection by iteratively training an SVM with the
current set of features and removing the feature with the smallest
weight in the resulting hyperplane at a time. Ultimately, this
algorithm results in a ranking list of features.
3.5. Results

Polynomial and Gaussian kernels were tried with both SVM
and s-SVM. To determine the parameters in both classifiers, we
apply a 10-fold cross-validation [26]. The parameters with the
smallest generalization error are chosen. With the best parametric
setting obtained, i.e., the kernel function and associated para-
meters, the final form of the decision functions from the two
classifiers are yielded by retraining them using all the training
samples and testing afterwards using the test samples. The
redundant features are eliminated using the RFE algorithm [25]
for both classifiers with the two types of kernels. For each
classifier with a certain kernel function, we initiate training the
classifier with the top feature in the ranking, and increase the
number of features following that ranking until the test accuracy
begin to drop. The number of features is chosen to be the one
corresponding to the highest test accuracy.
Now we evaluate SVM and s-SVM each with both Gaussian and
polynomial kernels. The final parameter settings, the sizes of
selected feature subsets, and the test accuracies are reported in
Table 2. For s-SVM, we also list the calculated generalization lower
bound, which equals the generalization error bound given in
Theorem 1 subtracted from 1. The comparatively better
performance of s-SVM validates our proposition that proper
consideration of data structure does help to construct an
accurate classifier. Moreover, in either classifier, using the
Gaussian kernel does improve the performance compared to
using the polynomial kernel. The optimal numbers of features
selected using RFE are similar for all models. But for s-SVM and
SVM using the same type of kernels, the former requires a smaller
number of features compared to the latter.

The ROC curves for all combinations of the two classifiers and
the two kernel types are plotted in Fig. 4 for an overall
comparison. The areas under the ROC curves, i.e., Az’s in Table 2,
also demonstrate that s-SVM does outperform SVM given the
same type of kernels.

s-SVM outperforms SVM mainly because of its proper
consideration of the data structure information. In order to
demonstrate the existence of data structures in the kernel space,
which is impractical to be directly displayed because of the
infinite dimensionality, we choose to plot data images in the
kernel space by kernel principal component analysis (KPCA) [27],
i.e., projecting them onto the first three kernel principal
components in the kernel space. The structures of the training
dataset in both the polynomial kernel space and the RBF kernel
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Fig. 5. The visualization of data structures in (a) the normal class; (b) the cancerous class by projecting the data images in the polynomial kernel space onto the three most

principal kernel components.

Fig. 6. The visualization of data structures in (a) the normal class; (b) the cancerous class by projecting the data images in the RBF kernel space onto the three most

principal kernel components.

D. Wang et al. / Neurocomputing 72 (2009) 3296–3302 3301
space are illustrated in Figs. 5 and 6, respectively. Note that the
kernel parameter values are just the same as those determined in
s-SVM training.
4. Conclusion

In this paper we proposed a structured large margin machine,
i.e., s-SVM, by considering data structures in the training set. As
the optimization problem in s-SVM can be formulated as only one
second order cone programming problem, it can be solved
efficiently. This new classifier is applied to determine if a sample
image cropped from a digital mammogram is normal or cancerous
based on features extracted by various methods and selected via
the RFE algorithm. Experimental results show that s-SVM
achieves generally better detection performance in comparison
with the standard SVM.

In the future, we need to validate this classifier on more digital
mammogram datasets to get concrete and systematic comparison
with various large margin classifiers. Another important topic is
the automatic determination of kernel type and the value for the
kernel parameters.
Appendix A. Proof of Theorem 1
Proof. For the convenience of proof, we first recall the Marshall
and Olkin Theorem [28,15] in Lemma 1.

Lemma 1 (Marshall and Olkin Theorem). S is a convex set, and x is a

random vector, then

sup
x�ðl;RÞ

Prðx 2 SÞ ¼
1

1þ d2
with d2

¼ inf
x2S
ðx� lÞTR�1

ðx� lÞ,

where the supremum is taken over all distributions for x with mean l
and covariance matrix R.

In view of Lemma 1 and using S ¼ fw � xþ bp0g, we obtain the

upper bound on the probability that data in the positive cluster Pi

are misclassified to the negative class

sup
x�ðlPi

;RPi
Þ

Prðw � xþ bp0Þ ¼
1

1þ d2
Pi

with

d2
Pi
¼ inf

w�xþbp0
ðx� lPi

Þ
TR�1

Pi
ðx� lPi

Þ.
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Recently, in [15], a simple closed-form expression for the

minimum distance dPi
is derived as

d2
Pi
¼ inf

w�xþbp0
ðx� lPi

Þ
TR�1

Pi
ðx� lPi

Þ ¼
ðw � lPi

þ bÞþ
wTRPi

w
,

where ðzÞþ ¼ maxðz;0Þ. Similarly, the minimum distance dNj
is

d2
Nj
¼ inf

w�xþbX0
ðx� lNj

Þ
TR�1

Nj
ðx� lNj

Þ ¼
ð�w � lNj

� bÞþ

wRNj
w

.

In nonlinear s-SVM, for the ith positive cluster Pi, using

S ¼ fw �FðxÞ þ bp0g, the upper bound on the probability that

data in the positive cluster Pi are misclassified to the negative

class is

sup
x�ðlF

Pi
;RF

Pi
Þ

Prðw �FðxÞ þ bp0Þ ¼
1

1þ dF
Pi

2
,

with

dF
Pi

2
¼ inf

w�FðxÞþbp0
ðFðxÞ � lF

Pi
Þ
TRF

Pi

�1
ðFðxÞ � lF

Pi
Þ. (12)

Substituting (7)–(9) into (12), we derive

dF
Pi

2
¼

1

jPij
eT

Pi
KPi

aþ b

� �
þ

aT ~K
T

Pi

~KPi
a

.

Refer to Section 2.4 for the calculation of KPi
and ~KPi

.

Similarly for the jth negative cluster, we have

dF
Nj

2
¼

�
1

jNjj
eT

Nj
KNj

a� b

� �
þ

aþ ~K
T

Nj

~KNj
a

.

Then the bounds on misclassification probability for

positive and negative classes are
PCP

i¼1 ððjPij=jPjÞ1=ð1þ dðFÞPi

2
ÞÞ andPCN

j¼1 ððjNjj=jNjÞ1=ð1þ dðFÞNj

2
ÞÞ, respectively. We assume the prior

probability for any sample x belonging to the positive class to be

jPj=jPj þ jNj. Thus, the overall estimated error rate is

Eperrp
XCP

i¼1

jPij

jPj þ jNj

1

1þ dðFÞPi

2

0
@

1
AþXCN

j¼1

jNjj

jPj þ jNj

1

1þ dðFÞNj

2

0
B@

1
CA: &
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